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The anisotropic and isotropic yield properties of PET are described in terms of a tensor polynomial yield 
criterion published by Malmeister and Tsai-Wu. It is shown in detail how the criterion can be applied to 
oriented polymer films under the condition of plane stress. The coefficients of the polynomial are related 
to yield strengths measured in simple experiments. Experimental results obtained for oriented and 
isotropic PET are shown, and an analysis of the data in terms of the theory is included. In the discussion a 
comparison is made with the Hill and Hoffman yield criteria for anisotropic materials. 
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INTRODUCTION 

Most commonly used polymeric materials can have a 
relatively high degree of mechanical anisotropy. It may be 
observed that the highly anisotropic capabilities of 
polymers can only be matched, and surpassed, by 
composite materials with oriented fibre reinforcements, or 
laminates. Since composite materials are important 
structural engineering materials, therefore recent 
theoretical developments of anisotropic failure criteria 
have mainly occurred in that area I . 

We wish to consider a theory published by 
Malmeister 1, describing the anisotropic strength 
behaviour of polymers and fibre reinforced plastics. The 
theory is formulated in terms of general variables, 
including time, and in principle can be applied to any of 
the failure phenomena such as brittle failure, yield, creep 
failure, etc. In one of its forms the equation involves 
constant stress (or strain) rates which corresponds to a 
typical experimental situation when measuring yield 
strength. Thus with appropriate boundary conditions the 
theory can be applied to describe the yield behaviour of 
anisotropic polymers at constant temperature and in 
simple loading experiments. 

The translation of Malmeister's paper was followed by 
publication by Tsai and Wu 3 of a 'General Theory of 
Strength for Anisotropic Materials'. The Tsai-Wu theory 
is in essence identical with that of Malmeister and 
therefore will be referred to by their joint names. 

In this paper we apply the above-mentioned theory to 
poly(ethylene terephthalate) (PET) with biaxial 
orientation, and also to published results for oriented 
poly(vinyl chloride) (PVC) and polypropylene (PP). 

THEORY 

Definition of stresses and yield strength 
A Cartesian space is defined by a set of reference axes 1, 

2 and 3. Let a body be a bulk polymer (not a single crystal) 

of general anisotropy with the x, y and z axes identifying 
directions of any material (molecular) symmetry, as 
shown in Fioure 1. 

Consider that the body is in mechanical equilibrium, i.e. 
the sum of forces and the sum of momentum of forces 
applied to the body are equal to zero. 

Imagine that the polymeric material is cut through, and 
forces are applied over the new surfaces in such a way that 
the body does not change shape nor volume, and remains 
in equilibrium. Then a surface element 6S, with a normal 
vector fi has a force vectorfacting on it. 

In the frame of reference 1-2-3 the vectors fi andfwill 
have components nl andf~. The stress tensor is defined by 
(under the condition that 5S--~0): 

F6 

3 

/ 

5=fir  (I) 

Figure 1 Cartesian space is defined by the axes 1, 2 and 3. The 
material has structural symmetry axes x, y, z and is loaded by 
forces in mechanical equilibrium 
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In general the stress has nine components of which only 
six are independent. We use the contracted notation: 

0" k 

0"1 0"6 0"5 

0"2 0"4 

0"3 

(2) 

If the material is rotated, and the orientation of the surface 
element 6S becomes such that ff and f a r e  co-linear, then 
the stress tensor components become principal stresses, 
with the off-diagonal terms equal to zero. 

Notice that the material symmetry axes x, y, z are 
independent of, and not related to, the stress tensor nor its 
components. In the remainder of the paper it will be 
assumed that the principal stress directions coincide with 
the Cartesian 1, 2, 3-axes, whereas the material can 
assume any arbitrary orientation. 

We treat polymeric materials as pseudo-elastic, i.e. 
anelasticity, and creep and stress relaxation effects are not 
taken into account. It is assumed that all experiments are 
carried out at a constant stress rate (or corresponding 
strain rate), and that on loading the material will 
ultimately yield and show plastic deformation. 

The yield point or yield strength is defined as the stress 
at the onset of plastic deformation. This definition is made 
with reference to an experimental stress-strain curve. For  
polymers the yield point may be defined as the point of 
intersection of two lines tangent to the 'elastic' and 
'plastic' sections of the stress-strain curve 4. We note that 
this may not be related to any molecular mechanism, and 
differs from crystalline materials for which the yield point 
is usually defined as the elastic limit. 

The Malmeister and Tsai-Wu anisotropic failure 
criterion 

The central idea of this failure criterion is the 
existence of a strength tensor which is related to the tensor 
of the ultimate stresses attained in the polymer at the 
point of failure. Then the failure surface in the stress space 
can be described in terms of a tensor polynomial, given 
below in contracted notation: 

f (0"i) = Fi0"i + Fijal0" j + Fijk0"i0"Fk + " "  = 1 (3) 

where i, j, k = 1, 2 . . . . .  6. Fi, Fq and Fijk are the com- 
ponents of the strength tensor, whereas 0"~, 0-~ and 0-k are 
the components of the applied stress tensor. Equation (3) 
has the property of invariance under the transformation 
of axes by translation and rotation 3. 

It has been shown by both Malmeister and Tsai-Wu 
that the first two terms adequately represent the yield 
surfaces of anisotropic materials. (For a general 
discussion of the meaning of the tensor polynomials the 
reader is referred to an article by WuS.) Consequently, we 
limit the above equation to the linear and quadratic terms 
only, and write 

Fifi0"j + F~0"i = 1 (contracted notation) (4) 

It may be observed that the components of the strength 
tensor, Fij and Fi, must be symmetric, i.e. (i) Fq = F~, and 
(ii) F~ is symmetric when expressed in non-contracted 
notation. This symmetry is derived from the reasonable 
expectation that yield surface should be path 

and Z. t4. Stachurski 

independent. In geometrical terms equation (4) describes 
the failure surface in the six-dimensional space defined by 
individual stress components 0-1,0-2 . . . . .  0"6. 

For  a material of finite yield strength in all directions the 
components of the strength tensor must fulfil a stability 
condition 2,3. 

General anisotropy under plane stress condition 
We arrange the loading of the material in Figure 1 in 

such a way that all stress components containing the 2- 
axis vanish. Consequently, there will be three independent 
stress components left and equation (4) will reduce the 
two-dimensional case: 

Fll0- 2 + F330- 2 +F550- 2 + 2F130-10- 3 +2F150-10-5 

+2Fs50-30- 5 +Fl0-1 +F30- 3 +F50- 5 = 1 (5) 

Equation (5) represents the failure criterion in one plane 
for a material of general orientation and anisotropy. It is 
characterized by nine independent strength constants 
which can be determined experimentally. The equation 
has the following properties: it allows for different 
strengths in tension and compression, which are assumed 
to be natural properties of the polymer. Also it allows for 
different strengths in positive and negative shear (this is 
illustrated in Figure 2). The nine strength constants are 
determined by the properties of the polymer in the one 
plane, and the quation describes a yield surface in three- 
dimensional stress space defined by the stress components 
0-1, a3 and 0-5- 

Finally, it can be remarked that the elastic symmetry of 
the polymeric material under test need not be known and 
equation (5) applies to the general case where the material 
axes and the principal stress axes do not coincide. 

Polymers with orthotropic yield strength properties 
If we rotate the material in Figure 1 so that the material 

axes x and z coincide with the reference axes 1 and 3, then 
the number of strength constants is reduced 2'a's, i.e. 

X5 =)(s ,  F 15=F as=F s=O (6) 

The strength tensor measured in the one plane of the 
material is now given by six independent constants: 

F i 

F 1 

F3 

0 

0 

0 

0 

F j= 

Fll  0 Fla 0 0 0 

Faa 0 0 0 

0 0 0 

Fss 0 

0 

(7) 

0"3 = -0"1 0-1 = -0-3 

Figure 2 Illustration showing the difference between positive 
and negative shear strength in a material wi th preferred molecular 
orientation 
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a 
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describes an ellipsoid in the three-dimensional stress 
space defined by 0-1, a3 and 0-5 (notice that this is not the 
same as the Haig-Westergaard principal stress space6). We 
can illustrate the yield surface by its two traces; (i) on the 
0-1 - o 3  plane, and (ii) on the 0-1 -0-5 plane, (as shown in 
Figures 3a and 3b). The position of the ellipse relative to 
the 0-1 and 0-3 axes in Figure 3a is given by the usual 
analytical geometry equationsV: 

~b = ½ arctan(2F13/(F11 - F33 )) 

A0-1 = (F13F3 - F 3 3 F 1  )/2(F11F33 - F 2 3 )  

A0-1 (F13FI - F 1 1 F 3 ) / 2 ( F 1 1  F33 - F23 ) 

(lO) 

The ellipse in Figure 3b is symmetrical around the 0-1 axis 
since X5 = )(5. We note that a5 is an independent stress 
component and cannot be represented in the 0-1-0-3 plane. 

The three principal yield strengths, equivalent to the 
three principal axes of the ellipsoid, are orthogonal in the 
stress space. Tsai-Wu call such materials, whose strength 
is described by equation (8) as 'orthotropic'. This name 
has nothing to do with the elastic symmetry of the 
polymer. In fact oriented polymers with orthogonal or 
hexagonal symmetry or transversely isotropic (fibre 
symmetry) will have such orthotropic strength properties 
in planes in which the axes of molecular symmetry 
coincide with the axes of principal stress. 

O 
Figure 3 (a) Yield ellipse in the O-l-O 3 plane. A0-1 and Atr 3 give 
the position of the centre of the ellipse. X1 and )(3 denote the 
yield points in uniaxial tension, and )(1 and X 3 correspond to 
uniaxial compression. (b) Yield ellipse in the a l -  % stress plane. 
X 5 and )(5 denote pure shear yield strengths 

and equation (5) reduces to: 

F110-2 + F3 3 °-2 + F550-2 + 2F 130-10-3 

+ F 1 0 - 1  + F 3 0 -  3 = 1 (8) 

Malmeister and Tsai-Wu give the following formulae for 
calculating the strength constants: 

1 1 1 
F11 - -  X I . ~ I  F1 - X1 X1 

F55 = ~ -  

1 1 1 
1733 - -  F 3 - -  _ _  

X 3 X  3 X 3 X 3 
(9) 

1 1 1 2 

In equations (9) Xi denotes strengths measured in 
uniaxial tension and in pure shear, whereas )(i 
corresponds to the same measurements but under 
negative stress (i.e. uniaxial compression and negative 
pure shear), and U is the yield strength measured by 
applying uniaxial tensile load at 45 ° to the x and z axes. 

If the strength constants of equation (8) satisfy the 
stability conditions 2'3, then the quadratic equation 

~eld behaviour of isotropic polymers 
For an isotropic polymer we must have: 

X 1 = X 3 = X, X1 = -~a = X, X5 = x /XX/3 ,  and U = X 
(11) 

Therefore from equation (9) we find, 

Fl l  =F33=]F55=f f ,  F1 = F 2 = f f ,  F13=½F11 
(12) 

Equation (8) now becomes 

P(0-2 +0-~ + 30-2-a10-3) + ff(0-1+aa)= l (13) 

For an isotropic polymer we may rotate the stress axes 
arbitrarily until the shear stresses vanish, so that we 
obtain: 

2 2 
f l  (0-1p-]-ff3p) + f2(Glp'+'ff3p) = 1 (14) 

w h e r e  O'lp a n d  0-3p now denote principal stresses. Con- 
sequently equation (14) can now be written in a general 
form as 

f~ (II) +fz(I) = 1 (15) 

where I and II are the first and second stress invariants, 
and fl  and f2 are constants. An equation of this form has 
been described by Tschoegl 8 for the yield behaviour of 
isotropic polymers. Equation (15) allows for the natural 
difference between tensile and compressive strengths of 
the isotropic material. Also the presence of I indicates that 
yield behaviour is influenced by hydrostatic pressure. And 
finally, since all the stress states in the plane of the material 
can be described by the two principal stresses a I p and 0-3p, 
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Figure 4 Yield ellipse for an isotropic material in plane stress 
showing dependence on hydrostatic pressure. 0.1 and o 3 can be 
taken as tensor stress components or as principal stresses. Notice 
the difference between tensile, X, and compressive, X, yield 
strengths 

the yield surface degenerates from three-dimensional 
ellipsoid to two-dimensional ellipse as shown in Figure 4. 

Off-axis yield strength for oriented polymers 
Now let us consider the measurement of strength in an 

anisotropic polymer along a direction inclined by an 
angle 0 to the material x-axis, as shown in Figure 5. 

Since equation (4) (or equation (8)) holds true for any set 
of reference axes, therefore we may write 

F i f  itr.i +Fitr i = F; f;a~ + F;tr~ = 1 (16) 

Assume that in the reference state, the coefficients Fij and 
F~ are known. The coefficients F~j and F~ in the rotated 
state must be determined. 

The strength tensor coefficients are related to each 
other through the usual tensor transformation rules. For 
the case of uniaxial tension (or compression) we have all 
tr~j=0 except a'l=Xto (or -a'l=Xlo). Equation (4) 
becomes: 

! t 2 t t 
F l l ( O ' l )  + F i e  1 ---- 1 (17) 

After transformation of the strength tensor 9'1 o, equation 
(17) can be written in terms of the reference coefficients as: 

[~(3F11 + 3Fa3 + 2F13 + F5 s) + ½(Vx x - Fa3) cos2 0 

+-~(F11 + F3  3 - -  2F13  - -  F55 ) cos 40] X2o 

+[~(F1 +Fa)+½(FI-Fa)cos20]XI0-  1 =0 (18) 

The roots of equation (18) give the tensile strength (X~o) 
and the compressive strength (-~t0) along the off-axis 
direction. 

For the case of pure shear all ai,j = 0 except a~ = Xso (or 
-a'5 = Xso). Again using equations (4) and (16) and the 
tensor transformation rules we obtain: 

[-~(F11 + F3 3 - 2FI 3 + Fs 5 ) 

-- ~(Fx x +F33--2Ft 3--F55)cos40]X2o 

+ [(F a - Fa) sin 20]X5o- 1 = 0 (19) 

and Z. H. Stachurski 

Thus equation (19) can be used to calculate the off-axis 
shear strength in a material of general anisotropy in terms 
of its orthotropic strength properties. 

EXPERIMENTAL MATERIALS 

The material investigated was poly(ethylene terephthalate) 
which is used to make thin walled bottles for carbonated 
soft drinks. The polymer was made by solid state 
polymerization. The inherent viscosity of the studied 
material was 0.72, corresponding to a weight average 
molecular weight of about 60 000. The material was used 
in its natural state without pigmentation. In our 
investigations we have used; (i) samples of ready-made 
bottles representing the anisotropic material, and (ii) 
samples of the injection moulded parisons representing 
the isotropic state of the polymer. The amorphous and 
isotropic state of the parisons was ascertained by WAXD 
and by measurement of the Young's modulus in different 
directions. It was evident from the diffraction pattern that 
no noticeable preferred molecular orientation was 
present, and the measurements of Young's modulus gave 
a constant value of 2.3 GNm -2, within an experimental 
error of +5%. 

The film obtained from the walls of the bottles showed 
marked anisotropy. (The bottle is made in a two-stage 
process with biaxial hot stretching approximately x 2 in 
the longitudinal direction of the bottle, and x 4 in the 
hoop direction.) The birefringence, of the film was 
measured using the Cafl-Zeiss Ultraphot II microscope 
fitted with rotary compensator and a quartz plate. The 
average value was 0.08+0.002. From the WAXD 
recordings the crystallinity of the material was estimated 
to be around 20-30%. The Young's modulus in the hoop 
direction was measured to be 5.6 GNm -2 and in the 
longitudinal direction to be 3.1 GNm-2 

Description of testing samples 
The parisons were in a shape of a tube closed at one end, 

approximately 15 cm long, 3 cm diameter and 4 mm wall 
thickness. From these we have carefully machined 
cylindrical specimens of 26.2 mm outer diameter, 24.4 mm 
inner diameter and 104mm in overall length. The 
specimens had threaded ends for gripping, and the gauge 
was carefully polished to remove lathe machining marks. 
These specimens were suitable for measuring yield 
strengths in uniaxial and biaxial tension. 

f 

i i 

z 

/ 

X 

Figure 5 Relationship between the new 1' and 3', and the old 1 
and 3 reference axes, and the off-axis O-direction in an 
anisotropic material 
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Table 1 Off-axis tensile yield properties of PET 

Angle between tension and hoop direct [deg.] 0 10 20 45 65 80 90 
Yield strength [MPa] 145 115 103 75 70.5 61 62 

Table 2 Off-axis shear yield properties of PET 

Angle between shear and hoop direct [deg.] 0 30 45 60 90 120 135 165 
Yield strength [MPa] 42.6 63.1 62.0 49,1 41.8 41.0 41.0 39.9 

I O C  

- I 0 0  

a PET 0- 3 

-200 

Ioo 

O 

-tO0 

-IOO O iOO 200 

PET IJ crS 

I 

-,oo o ,06' 
Figure 6 (a) Yield ellipse in the tr~-~r 3 plane for biaxially 
oriented PET, The solid line drawn according to equation (8) and 
coefficients (20). The points correspond to measured yield 
strengths. Broken line shows change in shape of ellipse when 
shear strengths are reduced by 5% only. (b) Yield ellipse in the 
cq--a 5 plane, The points correspond to measured yield strengths 

To carry out measurements in compression the cylinders 
were cut short to between 10 to 20 mm to avoid buckling 
and to minimize end effects. 

The bottles, which had approximate dimensions of 
30 cm in length and 11 cm in diameter, were cut open, and 
by removing the top and bottom parts, resulted in a sheet 
of PET film about 2 0 x 3 0  cm. Dumb-bell shaped 
specimens 115 mm long, 6 mm wide at the gauge, were cut 
out from the film at various orientations with respect to 
the hoop direction. The thickness of the specimens varied 
between 0.33 and 0.36 mm. These specimens were used to 
measure the yield strengths in uniaxial tension. Due to the 
small thickness dimension of the film, compressive yield 
strengths in the plane of the film could not be measured. 

M E T H O D  OF  TESTING 

All mechanical tests were carried out on an Instron 
Universal Testing Machine in a temperature controlled 
room. The temperature of testing was 20°+1°C. The 
specimens were loaded under constant cross-head speed 
condition, which was chosen for the various types of 
specimen to approximate equal material strain rate of 
0.! m in - L  

The extension of the thin film specimens was measured 
using an Instron extensometer. The deformation of the 
cylindrical specimens was measured by means of the 
cross-head movement. No attempt was made to measure 
the deformation of specimens for the shear yield, and the 
off-axis tensile yield type. 

The load was measured by appropriate load cells, and 
the relevant dimensions of each specimen were recorded 
prior to testing. 

To measure the yield strengths in shear in the plane of 
the film the method of Sternstein et al. 1 ~ was followed. 

RESULTS 

In the bottle bursting tests plastic deformation was 
observed in the cylindrical portion. The pressure at the 
onset of yield was measured to be equal to 0.98 MPa. 
Assuming that the stresses in the walls of the bottle 
approximate the case of a pressurized long cylinder 12, w e  

calculated the stresses at yield; a l = 2tr3 = 165 + 6 MPa. 
The results for the off-axis measurements are 

summarized in the Tables ! and 2. 
Substitution in equation (8) for stresses using the data 

from (i) bursting; (ii) tension: Table I for angles 0 ° and 90 °; 
(iii) shear: Table 2 for angles 0 °, 45 ° and 135 °, results in a 
set of six simultaneous equations with six unknowns. 
Calculations result in the values of the strength 
coefficients as follows: 

F l l = 6 - 4 0 x 1 0  -5 [MPa]  -2 

F33 = 1.74 x 10 -4 ,, 

F55 =5.67 x 10 -4 ,, 

F1 a = - 7.25 × 10- 5 ,, 

F 1 = - 2 . 3 9  x 10 -3 [MPA] -1 

F3 =5.28 x 10 -a ,, 

(20) 

The yield ellipses for oriented PET are shown in Figures 
6(a) and (b). 

The measurement of the tensile and compressive yield 
strengths on the isotropic PET gave the following results: 

Tensile strength = 57.9 MPa 

Compressive strength = 66.7 MPa 

The corresponding yield ellipse is shown in Figure 7. 
The use of equations (18) and (19) and the constants in 

(20) results in Figure 8, in which the solid lines correspond 
to the equations and the points to the data in Tables 1 
and 2. 
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Yield ellipse for the isotropic PET according to the 
equation (15). The points correspond to measured yield strengths 
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Figure 8 Variation of the off-axis yield strengths with angle 0 
for the oriented PET. The curves drawn according to equations 
(18), (19) and (20). The points drawn according to data in 
Tables I and 2 

DISCUSSION 

Relationship between yield behaviour and molecular 
structure 

The results for the oriented and isotropic PET 
presented in Figures 6 and 8 are consistent with the above 
described theory. The yield ellipse for the istropic PET has 
its major axis inclined at 45 ° to the a~ axis, and its centre is 
displaced towards the third quadrant indicating de- 
pendence of yield on hydrostatic pressure. According to 
equation (15) only two experimental measurements are 
required to determine the yield ellipse. It was shown in 
other publications ~a'14 that this equation describes 
adequately the yield behaviou r of homogeneous isotropic 
polymers. We may assume that the two points in Figure 7 

and Z. H. Stachurski 

are sufficient, and that the ellipse represents the loci of 
yield strengths of this material. 

For the oriented PET (Figure 6a) the yield ellipse is 
rotated towards the al axis (parallel with the hoop 
direction). Also the centre of the ellipse is displaced from 
the tr 1 = tr 3 line. Such a 'distortion' of the yield ellipse from 
its 'isotropic state' corresponds to the changes in the yield 
behaviour of the material resulting from the introduced 
molecular orientation. The elongation of the ellipse 
towards the hoop direction reflects the increased yield 
strength of the material in the direction of maximum 
drawing. 

Five points are required to determine uniquely the 
ellipse for the anisotropic materials. The accuracy in 
determining the ellipse depends on the position of the 
points, and the amount of error allowed. In Figure 6a five 
experimental points are shown. Each point is an average 
of at least six measurements, and we estimate the errors to 
be approximately ___ 5~o. The shape of the ellipse in the 
first quadrant would not be altered noticeably by 
variation of + 5~o of the experimental values for tensile 
strengths (uniaxial and biaxial). However, diminishing the 
value of the shear yield strengths by 5~o has a pronounced 
effect on the shape of the ellipse in the third quadrant. This 
is illustrated in Figure 6a by the broken line. 
Consequently, one must note that the predictive ability of 
equation (8) for the yield behaviour in the third quadrant 
is very uncertain, unless the accuracy of measurements is 
increased, or the range of measurements is extended to the 
third quadrant. 

In isotropic polymers it is usually observed that the 
yield strength in compression is about 10~o to 30~ higher 
than that in tension. Surprisingly, in oriented polymers 
the reverse is true for the directions of maximum 
molecular orientation. The yield strength in tension is 
much higher than that in compression along the hoop 
direction. In this respect oriented polymers resemble fibre 
reinforced composite materials. It is possible that the 
highly oriented polymers (particularly crystalline) may be 
considered as two phase materials; bundles of highly 
drawn molecules resembling the fibres, and the less 
oriented regions acting as the matrix. This interpretation 
has been used to account for the very high elastic 
anisotropy of polymers 15. If this analogy is valid then the 
molecular mechanisms of yield in highly anisotropic 
polymers may be studied in terms of the behaviour of 
composite materials. 

The yield properties of PET have been measured and 
studied previously ~6'17. However, we do not wish to make 
any comparisons between the various grades of PET. 
Instead, it is more instructive to discuss the yield 
behaviour of PET in relation to other materials. 
Sufficiently complete yield data are available for 
uniaxially oriented PVC ~s and pp19. From these, the 
strength coefficients can be calculated and the yield 
ellipses drawn. They are shown in Figures 9 and 10. 

It is immediately obvious from Figure 9 that the yield 
anisotropy of PVC is not very pronounced. This is 
consistent with the view that in noncrystalline polymers 
the network deformation process produces only small 
effects on mechanical properties 2°. The elastic anisotropy 
of oriented PVC is also not very pronounced 21. 

The mechanical anisotropy of yield in PP (Figure 10) is 
highly developed. This is indicated by the elongation of 
the ellipse, its inclination towards the tr I axis and 
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i showed that application of equation (21) to oriented PET 
: gave poor correlation with experimental data. Also the 
i significance of the natural difference between tensile and 

compressive yield strengths was not well understood at 
that time. 

Initially the difference was thought to result from 
' internal stresses in the material caused by the drawing 

process. On this basis Brown et al. 16 and Rawson and 
i Ryder 18 modified equation (21) by adding a term corre- 

cq sponding to internal stress. The latter authors obtained 
value for the internal stress of the order of 20 MNm -2, 

~: which they compared to rubber elasticity forces. 
: However, a later work by Shinozaki and Groves 19 

showed that the internal stress concept is not satisfactory 
as it turns out to be much higher than either rubber 
elasticity forces or the drawing forces at elevated tem- 
perature. Their general conclusion was that the Hill von 
Mises theory is not suitable for anisotropic polymers. 

Hoffman anisotropic failure criterion 

Hoffman z3 has proposed an empirical equation to 
describe failure of orthotropic materials, allowing for 
unequal tensile and compressive strengths, in the 
following form' 

C1 (0"2 - 0"3 )2 -F C 2 (0.3 - 0"1 )2 jr_ C3 (0"1 - 0"2 )2 _j_ C40" 1 

~t_ C50" 2 _[- C60" 3 _~_ C70.2 + C80-2 -F C90.62 = 1 (22) 

In this equation the constants C 1, C2 ..... C9 are defined as 
follows: 

,Ix 1 1]  
C 1 = 2  X ~  --]- X3273 X1271 

C2 and C3 by permutation of the subscripts 1, 2 and 3 

1 1 
C4=~T-~1,__ C5 and C6 by permutation of 2 and 3 

( 1 )  2 
C7= ~ , Cs and C9 by permutation of 5 and 6. 

(23) 
In equations (23) X, X2, X3 and X, X2 and )(3 have exactly 
the same meaning as defined earlier on in equation (9). 
However, the definition of the constants C1, Cz and C 3 is 
fundamentally different from those defined by Malmeister 
and Tsai-Wu, in that each of the constants depends on the 
strength properties in the three orthogonal directions. 

Although Hoffman proposed this equation for the 
brittle failure of fibre reinforced composities, it has been 
used to describe the yield behaviour of anisotropic 
polymers. Indeed the same equation was proposed else- 
where 24 as a yield criterion for oriented polymers. The 
authors have elucidated on the advantages of this 
equation, and evaluated their own, and published, data in 
terms of the equation. 

The theory of Hoffman has a major deficiency in that it 
cannot be simply reduced to a two-dimensional case (e.g. 
plane stress) for materials of orthogonal molecular 
symmetry. Thus, if the material in Figure 1 is loaded in 
such a way that all stresses containing the 2-direction 
vanish then equation (22) must reduce to: 

(c2 + c3)o,  ~ + (c ,  + c 2 ) ~  + c80.~ 

-2C20.10"3 +C40-1 -F-C603= 1 (24) 

-80  - 4 0  0 40  80 120 160 

Figure 9 Yield ellipse in the 0-1-0-3 plane for uniaxially oriented 
PVC constructed on the basis of data published by Rawson and 
RideP 8 
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Figure 10 Yield ellipse in the 0-1 0- 3 plane for uniaxially oriented 
PP constructed on the basis of data published by Shinozaki and 
G roves 19 

displacement of its centre from the point of 0"1 = 0"3 = 0. 
This material has high crystallinity and drawing produces 
a large degree of molecular orientation. The crystalline 
entities, in the form of fibrils, can be thought of as short 
fibres embedded in less oriented amorphous matrix. In 
tension along the draw direction yielding can occur by 
shear on the fibre-matrix interface. This requires high 
stresses as compared to yielding in compression which 
can involve buckling or reverse shear of the crystallites, 
aided by the rubber-like internal stresses existing in the 
amorphous matrix. A further discussion of molecular 
mechanisms of yielding in polymers will follow in a future 
publication. 

Hill-yon Mises theory 
The Hill-von Mises theory for orthotropic materials z2 

was generally used in the past to describe the yield 
behaviour of oriented polymers. The equation is of the 
following form: 

F ( 6 2  - 0"3) 2 q- G(0"1 - 0"2 )2 + H ( 0 "  3 _ o. 1 )2 

+L0"23 +M0"31 +N0"12 = 1 (21) 

where ~r's represent the stress components and 
F, G . . . . .  N are the strength constants. Whereas the 
theory is successful in describing the yield behaviour of 
anisotropic metals, an early paper by Brown et al. 16 
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Using relations (23) we find that (C2 + C3) and (C1 + C2) 
can be expressed in terms of strengths in the 1 and 3 
directions only. However, C 2 depends on the strengths in 
the three orthogonal directions. Therefore, equation (24) 
is indeterminate unless the strength properties in the 2- 
direction are measured separately. Conversely, the 
erroneous conclusion could be reached that application of 
equation (24) to biaxially oriented polymer films allows 
one to predict the out-of-plane strength by measuring the 
strength properties in the 1-3 plane only. 

In his paper Hoffman gives an example of a fibre 
reinforced composite which has transverse isotropy. 
Indeed, if the axis of transverse isotr_opy is assumed to lie 
along the 3-axis then X 1 = X2 and X 1 = -~2- Under these 
conditions equation (22) reduces to: 

(C2 + C3)~r~ + (C1 + C2) (~r] - ~, cr3) 

"1- Cs0"25 --~ C40" I -3 I- C60" 3 = 1 (25) 

In this case the equation has five independent strength 
constants which can be determined by five independent 
measurements, and therefore it is self-consistent from the 
analytical point of view. The limitation of Hoffman's 
equation in two dimensions to transversely isotropic 
materials has been mistakenly reported by Franklin I as 
applicable to orthotropic materials. 

In summary, Hoffman's equation is limited in three 
dimensions to materials of orthogonal symmetry and in 
two dimensions for materials of transverse isotropy. 
Therefore, it is of limited scope and is unlikely to become 
useful in our understanding of yield behaviour in oriented 
polymers. 

SUMMARY 

It has been clearly demonstrated that polymers show 
dependence of yield behaviour on hydrostatic pressure 25. 
Consequently any mathematical model for a yield 
criterion must include the first stress invariant. A simpli- 
fication by replacement of stress invariants with 
deviatoric invariants is inadmissible. This means that a 
physical interpretation in terms of distortional energy or 
octahedral stress is not possible. 

Irrespective of the molecular mechanisms involved, 
preference should be given to mathematical models which 
satisfy the condition of material frame indifference. The 
use of strength tensors in the Malmeister and Tsai-Wu 
theory gives transformation invariance and hence satisfies 
the above condition. By contrast, the Hill and Hoffman 
yield criteria (in which the strength constants do not form 

Wu and Z. H. Stachurski 

a tensor) are applicable only when the axes of molecular 
(material) symmetry coincide with the reference axes. 

Advantages of the tensor polynomial include: (i) 
flexibility without redundancy; (ii) independency of F~ 3 
(in the Hill-Hoffman theories - F 13 = FI 1 + F12), and (iii) 
ease of application of three-, two- and one-dimensional 
cases by the appropriate use of the indices. 

In applying the yield criterion to anisotropic (oriented) 
polymers one must be careful to ensure that it corre- 
sponds to a particular molecular mechanism. In reality, 
several molecular mechanisms may be operative in 
different regions of the stress state. Therefore, a thorough 
understanding of the underlying molecular processes is 
required, before any physical interpretation of the 
strength constants can be attempted. 
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